

A DITERPENOID WITH A NEW CARBON SKELETON FROM *PYGMAEOPREMNA HERBACEA*

QINGCHANG MENG*, NAIJUE ZHUF and WEIXIN CHEN

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, People's Republic of China, †Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China

(Revised received 18 August 1987)

Key Word Index—*Pygmaeopremna herbacea*, Verbenaceae; diterpenoid, pygmaeocine E

Abstract—Pygmaeocine E, a diterpenoid with a new carbon skeleton, was isolated from roots of *Pygmaeopremna herbacea*. Its structure was established by spectroscopic methods and verified by X-ray crystallography.

INTRODUCTION

Pygmaeopremna herbacea (Roxb.) Moldenke is used as a folk remedy in the Yunnan province of China to reduce inflammation and to cure malaria. To date, there is no published work on the chemistry of *Pygmaeopremna* species. From the diethyl ether extract of roots of *P. herbacea*, seven crystalline compounds were isolated. One of them, named pygmaeocine E, is reported in this paper. Its structure was determined by spectroscopic methods and verified by X-ray diffraction as a diterpenoid with a new carbon skeleton.

RESULTS AND DISCUSSION

Pygmaeocine E (1), $C_{20}H_{20}O_4$ (MS and elemental analysis), was obtained as brownish red prisms. Its structure was originally deduced from 1H NMR, ^{13}C NMR, and IR data as 1,1,10-trimethyl-7-isopropyl-3-hydroxyanthran-2,5,6-trione, but in view of its novelty it was confirmed by X-ray crystallography. The X-ray analysis procedure is given in the Experimental section. Fig. 1 is a stereoscopic view of the molecule.

The main spectroscopic grounds for establishing structure 1 were as follows. The 1H NMR data showed the presence of three methyl groups [δ 2.72 (s, 3H) and 1.56 (s, 6H)] and an isopropyl group [δ 1.17 (d, 6H, J = 7 Hz) and 3.02 (sept, 1H, J = 7 Hz)]. IR bands at 3380.0 and 1216.8 cm^{-1} and an 1H NMR signal at δ 6.48 (s, 1H, disappeared on deuteration) established the presence of a hydroxyl group. The IR spectrum also revealed the presence of a benzene ring (1580.6 and 1460 cm^{-1}). Three carbonyl groups were shown by signals at δ 198.2, 182.2 and 181.3 in the ^{13}C NMR spectrum (Table 1). The last two signals are characteristic of an *ortho*-quinone system and this was confirmed by three weak IR absorptions at 1679.5, 1650.5 (buried beneath the strong absorption of a ketonic carbonyl), and 1614.5 cm^{-1} , because generally an *ortho*-quinone system affords three rather weak IR absorptions in the 1680–1610 cm^{-1} region [1–3]. The

signal at δ 198.2 was attributed to an α,β -unsaturated ketonic carbonyl, the strong IR absorption of which was at a rather low frequency (1650.5 cm^{-1}) and suggested that the conjugated system of the α,β -unsaturated ketonic carbonyl extended to the benzene ring and the hydroxyl attached to its α -position [4]. In view of the high degree of unsaturation and the presence of seven quaternary sp^2 -carbons in 1, it could be deduced that the benzene ring was fused to the *ortho*-quinone system. The DEPT sequence indicated only one aliphatic quaternary carbon at a rather low field (δ 48.1) which led us to the conclusion that it was flanked both by the benzene ring and the ketonic carbonyl. One *ortho*-quinone carbonyl (C-10) of 1 gave a ^{13}C NMR signal at δ 182.2, i.e. 1.3 ppm downfield from that of C-2 of β -naphthoquinone. This suggested that there was an alkyl (isopropyl) group in the α -position to this carbonyl [5]. Furthermore, the 13-methyl group of 1 gave a 1H NMR signal at a relatively low field (δ 2.72) which indicated that it need to be located *peri* to an *ortho*-quinone carbonyl group in order to be deshielded by the carbonyl group.

All the above data support structure 1 for pygmaeo-

Table 1 ^{13}C NMR spectral data of pygmaeocine E (50.3 MHz, pyridine- d_5)*

C	δ	C	δ
1	112.4 d	11	181.3 s
2	149.8 s	12	141.2 s
3	198.2 s	13	127.9 s
4	48.1 s	14	147.9 s
5	134.2 s	15	27.4 q
6	125.8 d	16	27.4 q
7	145.0 s	17	15.8 q
8	139.9 d	18	26.8 d
9	131.4 s	19	21.1 q
10	182.2 s	20	21.1 q

* Multiplicities assigned by DEPT sequence

* Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

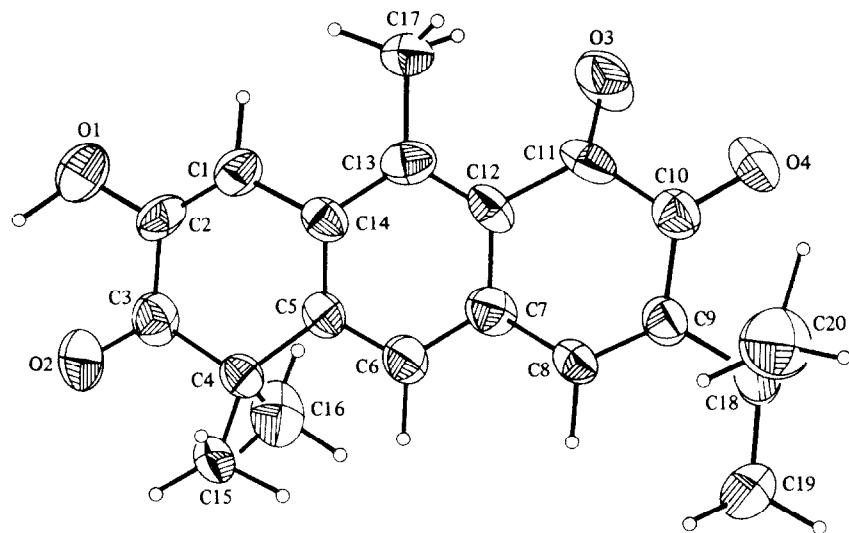
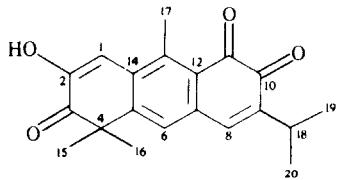



Fig. 1

1

cine E, as did the calculations of the predicted substituent effects on the ^{13}C NMR chemical shifts of benzene carbons [5]. To our knowledge, pygmaeocine E is a diterpenoid with a new carbon skeleton. We propose to name the skeleton pygmaeocane E.

EXPERIMENTAL

General Mps uncorr, ^1H NMR 200 MHz, TMS as internal standard, ^{13}C NMR 50.3 MHz, TMS as internal standard, IR KBr, MS 70 eV, UV MeOH

Isolation and separation of pygmaeocine E Roots of *Pygmaeopremna herbacea* (Roxb.) Moldenke (18 kg), collected in Shuangjiang County, Yunnan Province of China, were extracted ($\times 3$) with Et_2O at room temp. The crude extract was concd (682 g), mixed with the same amount of kieselguhr and extracted in turn with petrol (60–90°), C_6H_6 and Et_2O in a Soxhlet apparatus, respectively. The petrol extract (130 g) was chromatographed over 1500 g silica gel packed in petrol, 500 ml fractions being collected as follows 1–20 (petrol), 21–70 (petrol– Et_2O , gradient elution), 71–95 (petrol– Et_2O –MeOH, gradient elution). Fractions 47–50 afforded compound 1 (135 mg) which was recrystallized from CHCl_3 –MeOH (1:1).

Pygmaeocine E (1) Brownish-red prisms, mp 192–193°, $\text{C}_{20}\text{H}_{20}\text{O}_4$ (Calc. C4.04, H6.21, Found, C74.68, H6.32) UV $\lambda_{\text{max}}^{\text{MeOH}}$ (nm) 219.2(s), 267.2(s), 284.0(s), 335.2(s), 482.0(w, br), IR $\nu_{\text{max}}^{\text{KBr}}$ (cm^{-1}) 3380.0, 2962.5, 2928.4, 1679.5, 1650.5, 1614.5, 1580.6, 1460.0, 1420.2, 1395.4, 1377.0, 1258.6, 1216.8, ^1H NMR (200 MHz, CDCl_3) δ 7.25 (s, 1H), 7.09 (s, 1H), 6.48 (s, 1H, disappeared on deuteration), 3.02 (sept, 1H, $J = 7$ Hz), 2.72 (s,

3H), 1.56 (s, 6H), 1.17 (d, 6H, $J = 7$ Hz) ^{13}C NMR Table 1, MS m/z (rel. int.) 324 [M] $^+$ (16), 296 (64), 281 (8), 254 (100), 239 (39), 225 (8), 210 (3), 195 (4), 43 (19)

X-ray analysis Single crystals were grown by slow crystallization from CHCl_3 –MeOH. Crystal data are monoclinic, space group $P_{2_{1},a}$, $a = 10.603$ (4), $b = 14.680$ (7), $c = 11.169$ (7) \AA , $\beta = 105.71$ (4)°, $V = 1673$ \AA^3 , $Z = 4$, and $\mu(\text{MoK}\alpha) = 0.83$ cm^{-1} . The size of the crystal used for collection was $\text{c}a$ $0.1 \times 0.4 \times 0.6$ mm^3 . The determination of the unit cell parameters and the collection of intensities were performed on a computer controlled Nicolet P3/F four-circle diffractometer with graphite monochromatized $\text{MoK}\alpha$ radiation. Cell dimensions were calculated on the basis of 25 reflections in the range $20 < 2\theta < 45$ ° and refined by least squares. 2145 independent reflections were collected in the interval $0 < 2\theta < 45$ ° by the $\omega/2\theta$ scan technique using a variable scan rate of 4.0–29.3°/min determined by a fast pre-scan. The intensity data were corrected for Lorentz–polarization effects. Semi-empirical absorption corrections were made on the basis of scan data with six different 2θ values reflections. Only 1160 reflections were considered as observed [$I \geq 2.5\sigma(I)$] and used for structure solving and refinement. The structure was solved using the direct-method. All the non-hydrogen atoms could be recovered from the E-map. The refinement was performed by least-square method using a block-diagonal matrix. All the hydrogen atoms were located in a difference map and refined isotropically. The last difference Fourier map was essentially featureless with no peaks greater than ± 0.2 e\AA^{-3} . The final discrepancy index was $R = 0.053$.

REFERENCES

- 1 Fang, C., Chang, P. and Hsu, T. (1976) *Acta Chim Sinica* **34**, 197
- 2 Chien, M., Young, P., Ku, W., Chen, Z., Chen, H. and Yeh, H. (1978) *Acta Chim Sinica* **36**, 199
- 3 Fuson, N., Josien, M. L. and Shelton, E. M. (1954) *J Am Chem Soc* **76**, 2526
- 4 Nakanishi, K. and Solomon, P. H. (1977) *Infrared Absorption Spectroscopy* Holden-Day, New York
- 5 Levy, G. C., Lichten, R. L. and Nelson, G. L. (1980) *Carbon-13 Nuclear Magnetic Resonance Spectroscopy* John Wiley, New York